Northeast Consortium Project Mid-Year Progress Report:

Title: Activity and distribution of cod in the Ipswich Bay spawning area
Contract number: 111A22

Project Leader:
W.H. Howell
Dept. of Zoology, UNH, Durham, 03824
Phone: 862-2109
Email: whh@cisunix.unh.edu

Project Participants:
David Goethel, F/V *Ellen Diane*
23 Ridgeview Terrace, Hampton, NH 03842
Phone: 603-926-2165
Email: egoethel@comcast.net

Carl Bouchard, F/V *Stormy Weather*
P.O. Box 219, Exeter, NH 03833
Phone: 603-772-5047

Charles Felch, Sr., F/V *Lady Victoria*
118 Centennial St., Seabrook, NH 03874
Phone: 603-474-7342

Marc Stettner, F/V *Too Far*
91 Fairview Ave., Portsmouth, NH 03801
Phone: 603-431-2577

Pingguo He
OPAL/EOS, Morse Hall, UNH, Durham 03824
Phone: 862-3154

Major Accomplishments:

The overall goal of the project is to study the activity and fine scale distribution of cod in the Ipswich Bay spawning area, using a combination of data storage tags (DSTs) and acoustic telemetry.

Letters of Acknowledgement to work in the closed area were requested from the National Marine Fisheries Service, and one was obtained for each participating vessel. Prior to initiation of the fieldwork, six cod were implanted with dummy acoustic transmitters and
DSTs, and monitored in captivity for three months. All were observed to swim and
behave normally and displayed no ill effects from tagging.

Between April 21st and May 17th, 200 adult spawning cod in Ipswich Bay were captured
by short bottom tows aboard a commercial vessel and externally tagged with DSTs.
Thirty of the fish also had an acoustic transmitter surgically implanted. The DSTs were
programmed to record both water temperature and depth of each fish at 12-minute
intervals for approximately six months after release, and each was imprinted with
information on how to report the recapture of a DST-tagged fish. Monetary rewards
($25) were offered for the return of DSTs so that data could be downloaded from the
tags. To date, 20 DSTs have been returned by fishermen (10% recapture rate). Each tag
creates a data profile of an individual’s vertical activity in the water column (depth) and
ambient temperature. The time at liberty for recaptured tags ranges from 20 days (2,361
measurements for both depth and temperature/tag) to 169 days (20,358 measurements of
depth and temperature/tag). Recapture locations have ranged from Platts Bank to
Stellwagen Bank. Trends in DST data include the occupation of relatively uniform and
consistent depths in May and early June, sometimes punctuated by brief ascents to much
shallower depths, which may reflect spawning events. There is typically a dramatic shift
to deeper depths in mid-June, showing that individuals have moved out of the study area.
This depth change coincides with the initiation of a wide range of vertical movement in
the water column, indicating a change in behavior as well as location.

The cod tagged cod with an acoustic transmitter were tracked to determine their
movement during their residence in Ipswich Bay. Tracking was achieved in two ways. In
the first, a series of 6 submerged stationary hydrophones were deployed in the area.
These recorded the unique acoustic signal from any fish that came within 800m of the
hydrophone. In the second tracking method, fish were located using a manually operated
directional hydrophone aboard commercial vessels involved in the project. We
undertook both day and night manual tracking trips, 10-12 hours long, in the spawning
area from May 6th through June 30th. The project utilized 47 days of boat time for
tracking. Of the 30 fish tagged with transmitters, 29 were relocated on at least one day,
and 20 were relocated on more than 5 days. Tracking data from both the stationary and
manual hydrophones were used to create a positional history of each fish during the
spawning period. All relocated transmitters (fish) were found to aggregate around a
small number of elevated, hard bottom features of Ipswich Bay, and frequently moved
back and forth between these landmarks during the tracking period.

A gradual eastward movement was observed for several cod in June until they appeared
to leave the area entirely. For some transmitters, tracking efforts captured abrupt and
rapid eastward movement out of Ipswich Bay, indicating the exact date and time that a
fish left the spawning area and moved offshore, and the approximate swimming speed
and heading. By the last week of June, just before commercial fishing opened in the area
on July 1st, only six transmitters could be relocated. The disappearance of tracked fish in
mid-June was concurrent with the shift in vertical activity and depth seen in most
recaptured DSTs, and supports the idea that most tagged fish moved out of the spawning
area by mid-June. Out of the 20 recaptured DSTs, 4 DSTs came from cod that contained
acoustic transmitters (13% recapture rate for the 30 acoustically tracked fish). The positional tracking data of these individual cod can be combined with the vertical profiles of their DSTs to create a three-dimensional history of their behavior and location during the spawning period.

Obstacles and Project Alterations:

Tagging and tracking goals were met in full, and no major setbacks were encountered. Few fish were found when tagging attempts began April 21st, but by April 30th, adults had moved into the area in large numbers. During the tagging period, females were less abundant than males, and more males were tagged with DSTs as a result (78 females and 122 males total). A 1:1 sex ratio was maintained when implanting acoustic transmitters (15 males, 15 females). Our most significant obstacle was weather, as expected, and storms in mid-May interrupted manual tracking and prevented some tags from being deployed until May 17th.

Plans for next 6 months:

We are currently overlaying the positional history of each tracked cod with physical and environmental features of the area: bathymetric features, sediment type, weather patterns, tidal and lunar cycles, and temperature. Having collected a sizeable data set of movement information, the next goal is to determine what relationships exist between fine-scale spawning behavior and habitat, and what associations are statistically significant. For the cod that we have both tracked and recovered DSTs for, we are working to integrate their DST vertical activity data and positional history.

Impacts for fishing and science communities:

Detailed information about the spatial distribution and habitat utilization of spawning cod in Ipswich Bay allows fishery managers to better assess the importance of the study area as a spawning ground, what features are critical to spawning populations each year, and how to most effectively preserve the population and regulate the area. Fine-scale data indicating the exact timing of cod entry and exit from the inshore spawning ground can improve rolling closure regulations. Depth profiles can improve the accuracy of survey trawling in spawning areas and efficiency of commercial trawling when spawning areas open. Depth profiles, tracking data, and recapture locations increase our knowledge of where cod disperse from spawning grounds, and what linkages exist between this spawning ground and fishing grounds elsewhere in the Gulf of Maine. Depth, timing, and exact location of spawning events can be used in modeling larval transport and recruitment, and thus determining the significance of this spawning population to New England cod stocks.